- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Mukund, Ashwin (2)
-
Rasool, Ghulam (2)
-
Afridi, Muhammad Ali (1)
-
Ahmed, Sabeen (1)
-
Farooq, Hamza (1)
-
Johnson, Joseph O (1)
-
Karolak, Aleksandra (1)
-
Naeini, Mia (1)
-
Park, Margaret A (1)
-
Permuth, Jennifer B (1)
-
Schabath, Matthew B (1)
-
Stewart, Paul A (1)
-
Tripathi, Aakash (1)
-
Waqas, Asim (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
Mukund, Ashwin; Afridi, Muhammad Ali; Karolak, Aleksandra; Park, Margaret A; Permuth, Jennifer B; Rasool, Ghulam (, Cancers)Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most formidable challenges in oncology, characterized by its late detection and poor prognosis. Artificial intelligence (AI) and machine learning (ML) are emerging as pivotal tools in revolutionizing PDAC care across various dimensions. Consequently, many studies have focused on using AI to improve the standard of PDAC care. This review article attempts to consolidate the literature from the past five years to identify high-impact, novel, and meaningful studies focusing on their transformative potential in PDAC management. Our analysis spans a broad spectrum of applications, including but not limited to patient risk stratification, early detection, and prediction of treatment outcomes, thereby highlighting AI’s potential role in enhancing the quality and precision of PDAC care. By categorizing the literature into discrete sections reflective of a patient’s journey from screening and diagnosis through treatment and survivorship, this review offers a comprehensive examination of AI-driven methodologies in addressing the multifaceted challenges of PDAC. Each study is summarized by explaining the dataset, ML model, evaluation metrics, and impact the study has on improving PDAC-related outcomes. We also discuss prevailing obstacles and limitations inherent in the application of AI within the PDAC context, offering insightful perspectives on potential future directions and innovations.more » « less
An official website of the United States government
